
Functional Plant Biology, 201, 44, 4 4-4 2 // . . . /10.10 1/ 1 3 3

The inhibition of photosynthesis under water deficit conditions is more severe in flecked than uniform irradiance in rice (*Oryza sativa*) plants

Jiali Sun , Qiangqiang Zhang , Muhammad Adnan Tabassum , Miao Ye , Shaobing Peng and Yong Li $^\prime$

A state of the s

Introduction

Ĵ

1 et al. 1 0 و (et al. 2012). , fl fl ¥ () j et al. 1 0 et al. 2002 et al. (2012). I 1 fŀ 1

© I 201

fi (2002 et al. 2002), (. . Ĵ (بر 1 et al. 2002 fi et al. (H 2014 fl⁄ et al. 2014). 1 fi , . fi

fl , fi , fi , , ,

µ 2012). (Ĵ (g . (ر 0 1 0% $(T_{0\%,A}$ $T_{0\%,A}),$ (et al. 2000 بز 1 et al. 2012). fi g , Ĵ

 f_{1} , f_{2} , f_{3} , f_{1} , f_{2} , f_{3} , f_{1} , f_{2} , f_{3} , f_{1} , f_{2} , f_{2} , $f_{0\%,A}$

 $(T_{0\%,A})$ j' g j' 0.1 -2 -1

(et al. 1 y 2000), y 2000), y and y 2000 y and y

1 % (/) , 20% 000 fi į Ĵ fi (1)1 j/ \mathbf{fl} Ĵ (2) \mathbf{fl} \mathbf{fi} Ĵ fi

IS% - ' j' '

Materials and methods

Plant materials and water treatments fi 21 ' 201 , 11.0 *y* , *y* ,

 $^{-1}$) 40 4)2 4 ((1 3)₂, 10 4,40 4,40 2 2 2 $^{-1}$) 2.0 , 0. (4 2·4 2 , 0.0 - 4) (

$$\Phi_{\rm II} = 1 - \frac{F}{F'}.$$
 (1)

 $\prod (J)$

$$J = \sum_{i=1}^{n} \sum_{i=1}^{n} \times \Phi_{i} \sum_{\mathbf{II}} \times \alpha \times \beta, \qquad (2)$$

3 A A g g, 1 00 µ -2 -1 $\times 3$ fl 1 بر 2 $100 \,\mu$ A g A , *g* , -fl Α j. 0% 0% A -fl $T_{0\%,A}$ $(T_{0\%,A}$)' fi fi fi 0 0% g (T 0%gs 1 T 0%gs) *j*!. I 3 Ĵ

Statistical analysis

Results

CO_2 response curve

Induction states of photosynthesis and stomatal conductance IS% A g - (. . 2).

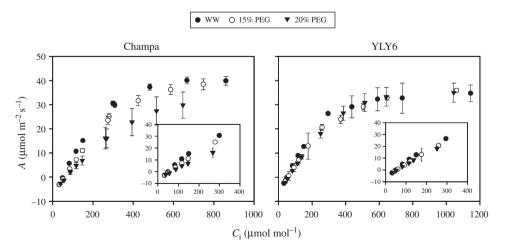


 Fig. 1.
 i
 fi
 2
 i
 i
 A,
 J'

 C,
 i
 2
 i
 1 % ,1 % i
 fi

 20%
 ,20%
 i
 fi
 .
 1 % ,1 % i
 fi

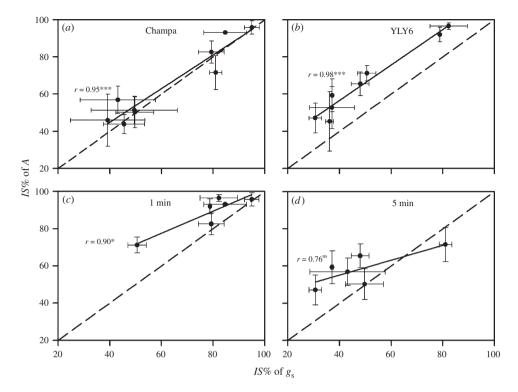
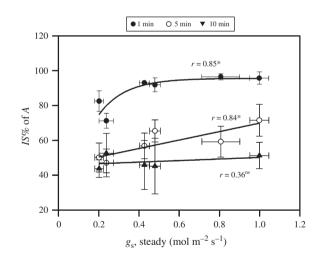



 Fig. 3.
 IS% A IS% g \cdot \cdot </th

% g 0.4 IS% g, IS% A 10 g , IS%, IS% A A . 1 g %

Dynamic photosynthesis in the flecked irradiance

, A-fi , A fi -fl g, A \mathbf{fi} 2). *g* , (fi $T_{0\%A}$ fi 7 0%A \mathbf{fi} fi Т 0%g 20% fi fi fi $T_{0\%g}$ fi fi fi i 4 I Ι, $_2$ fi 0.1 %,

Discussion

Table 2. Effects of PEG-induced water deficit on steady-state photosynthesis under a low-light level ($A_{initial}$), maximum photosynthetic rate under flecks ($A_{max-fleck}$), minimum photosynthetic rate under flecks ($A_{max-fleck}$), steady-state stomatal conductance under a low-light level ($g_{s,initial}$), maximum stomatal conductance under flecks ($g_{s,max-fleck}$), times to 50 and 90% of $A_{max-fleck}$ ($T_{50\%A}$ and $T_{90\%A}$), times to 50 and 90% of $g_{s,max-fleck}$ ($T_{50\%Gs}$ and $T_{90\%Gs}$), post-irradiance CO₂ fixation (PIF), and CO₂ burst (PIB)

	fi	P<0.0 20 % , 20%	√0	1 %	,1 %,	, fi
		1 %	20%		1 %	20%
$A (\mu -2 -1)$.4 1.0	.1 0.4	3 0.4	3. 1.0	2.0 1.1	4.0 1.1
A_{-fi} (μ)	33.3 1.	$2 \cdot 1$.	1. 1.	2.0 2.4	24. 2.	1 .2 2.
$-\pi$ $(\mu$)	4.1 0.0	1.42 0.0	0.1 0.0	2. 4 0. 3	2. 3 0.3	1. 0.3
$g_{,}$ $\begin{pmatrix} -2 & -1 \\ & & -2 \end{pmatrix}$	0.31 0.02	0.22 0.0	0.1 0.0	0.12 0.03	0.0 0.03	0.13 0.03
g_{1} ($^{-2}$ $^{-1}$)	1.1 0.23	0. 0,0	0,30 0,0	0, 2 0.10	0.42 0.14	0.33 0.14
$T_{0\%}$ ()	1,1 0.1	1.4 0.2	$\begin{array}{cccc} 0.30 & 0.0 \\ 0. & 0.2 \end{array}$	0.1	1.31 0	0.4 0
$T_{0\%}$ ()	• 2.1	11. 2.2	2.2	2, 1.1	3. 1.2	1.2
$T_{0\%}$ ()	.04 0.	11. 2.2 4.30 3.2	0.0 0.12	0. 0.20	1.2 0.1	6.40 0.04
$T_{0\%}$ ()	1,0 .4	1. 3.3	4.3 2	1. 0.	2. 1.	.3 1.
I (%)	\$ 0.2	5 .2 0.		.1 0.3	. 0.	0.
I (%)	0.13 0.11	0.0 0.0	0.32 0.0	6.30 0.10	0.4 0.0	0. 0 0.0

IS% AΑ, 2000). IS% (2 A 1 et al. 2002 et al. 2013). (\mathbf{fi} A (J et al. 2003), IS% et al. 2002). از (2 fi IS% , A g 10 1 . 2). (IS% IS% A g

et al. 2002). I (Ĵ 1 Ĵ IS% IS%g A IS% g 3a, b).Ĵ IS% IS% AIS% g (. 3*c*, IS% IS% *d*). I A g 1 ĥ 0. P < 0.0fi (rР 0.0 IS% IS% 10 A). g (). Ĵ (< Ĵ (>). IS% A g j 2000). I (IS% A g , 1 IS% 10 A g IS% g fi et al. 2002, 2003 et al. 2012).

 $1 \overset{y}{} \underbrace{et \ al. \ 201}_{y} \underbrace{I} \underbrace{I} \underbrace{I}_{y} \underbrace$

2f 3 et al. 1 (Ĵ Ĵ j y et al. (2002) *et al.* 201). 1[°].1[°]0. %, Shorea leprosula H 2 fi 2 14% **SS** % 2 ۰I Ĵ .0 0.30% I I fi fi # et al. (2003) A -fl $_{2}$ fi A \mathbf{fi} \mathbf{fl} 1 Ĵ jł.

2), fl fi et al. (201) A _fl Aet al. 2012 2013). fl fi I fi

IS% A 1 g 10 fi fi fi A A -fl IS% A A -fl Afi fl

Acknowledgements

0300102), (201 0300102) (31301 40), (2014), ((2 201 031). ,

References

- 4 . 10.100 / 0044200 0 , , , (2012) , a a *j* a (2000) je . Oecologia **122**, 4 –4 ,, ł ..., ^e
- . Journal of Experimental Botany **63**, 1 –1 4. 10.10 3/ / 42 (2002)
- . , . 1 • T jŧ.
- in vivo. Plant Physiology 130, 1 2–1 ⁴. 10.1104/ .00 2 0
- , (2014) I 2 Jⁱ fi . Plant, Cell & Environment 37, 24 0-24 0. 10.1111/ . 1232
- , , , , , , , , (200) jł. jł. 1 1 $3 \stackrel{?}{=} 24, 4 \stackrel{-}{=} 3.$ 10.100 / 112 4-00 -(1 * 0)
- 1 . , . 3 . Planta 149, s' = 0. 10.100 / 003 231 , (2002) 203 - -
- j^t . Annals of Botany 89, 1 3–1 . 10.10 3/ / 02

- (2002) fi . Functional Plant
- Biology 29, 4 1–4 1. 10.10 1/ 0111
- . Journal of Experimental Botany 58, 342 343 . 10.10 3/
- (201) / Journal of Experimental Botany 66, 241 -242 . 10.10 3/ / 40 , I , . Science 354, 88 8
- 10.112 / , Š , Č (2013) 4 , fl, , *J* 3 , اتر ا . Physiologia Plantarum 149, 2 10.1111/ .120
- (2012) بر بز Current بز *Opinion in Biotechnology* **23**, 21 –220. 10.101 / . .2011. 12.012
- (2002) j, 2 j بر , fl ,
- . Plant, Cell & Environment 25, 1 01-1 14. 10.104 / .13 -3040.2002.00 44. , , , (2003
- , . . , (2003) . Oecologia 135, 1^{4} 4–1 3. 10.100 / 00442-003-11 4 -
- ر (*Qryza sativa* .)، ، ، ، ، Plant & Cell Physiology **53**, 2–00. 10.10 3/ / 032
- ، , ، (2000) ب fl ،
- Oecologia **122**, 1 3–1 4. 10.100 / 0000 44 j' , , , , , j' (2002) / . Annals of Botany **89**, 33–3 . 10.10 3/
- 103
- j' . , . . , . . . (1 0) ' fl j' j' ' ' j' (Glycine max (.) .) Agricultural and Forest Meteorology 52, 3 -3 2. 10.101 /01 1 23(0) 00 2-
- -(2014) ,
- . . . **.** . . . Journal of Experimental Botany 65, . 10.10 3/ / 1 0
- 3143-31 . 10.10 . fl, Spinacia oleracea . Planta 167, 414–420. 10.100 / 003 134
- . Photosynthesis Research 41, 2 -302. 10.100 / 000
- 1 40 *j* (20<u>1</u>)

Cell & Environment **30**, 103 –1040. 10.1111/.13 -3040.200 . 01 10.

- , , , (201) *y* (Oryza sativa .) Scientific Reports **6**, 3130 . 10.103 / 3130
- , , (200) ^J cunninghamii . New Phytologist **165**, 143–1 . 10.1111/.14 . 2004.01232.

- بر Plant, Cell & Environment 18 , 31–40.
10.1111/.13 -3040.1 . 00 4.
ب . i fi
. Oecologia 111, 0 – 14. 10.100 /
0044200 02 4
(2013) . Plant Science 210 , 1 -1^3 2.
10.101 /2013.0 .01
, 1, 2012) 👎 fl (2012) بر 1, بر
ر از
32 , $10 -10^{\circ} 1$. 10.10 3/ y / 0 4
32 , 10 -10 1. 10.10 3/ <i>j</i> / 0 4 , <i>j</i> / 0 4 (2012)
2 fi // //
. Tree Physiology 32 , $3 - 44$.
10.10 3/ بز / 03