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Joint genome-wide association and 
transcriptome sequencing reveals 
a complex polygenic network 
underlying hypocotyl elongation in 
rapeseed (Brassica napus L.)
Xiang Luo, Zhifei Xue, Chaozhi Ma, Kaining Hu, Ziru Zeng, Shengwei Dou, Jinxing Tu, 
Jinxiong Shen, Bin Yi & Tingdong Fu

Hypocotyl elongation is considered an important typical seedling trait contributing directly to an 
increase in and stabilization of the yield in Brassica napus, but its molecular genetic mechanism is 
poorly understood. In the present study, hypocotyl lengths of 210 lines were measured in an illuminated 
culture room. A genome-wide association study (GWAS) was performed with 23,435 single nucleotide 
polymorphisms (SNPs) for hypocotyl length. Three lines with long hypocotyl length and three lines with 
short hypocotyl length from one doubled haploid line (DH) population were used for transcriptome 
sequencing. A GWAS followed by transcriptome analysis identified 29 differentially expressed genes 
associated with significant SNPs in B. napus. These genes regulate hypocotyl elongation by mediating 
flowering morphogenesis, circadian clock, hormone biosynthesis, or important metabolic signaling 
pathways. Among these genes, BnaC07g46770D negatively regulates hypocotyl elongation directly, as 
well as flowering time. Our results indicate that a joint GWAS and transcriptome analysis has significant 
potential for identifying the genes responsible for hypocotyl elongation; The extension of hypocotyl is a 
complex biological process regulated by a polygenic network.

Rapeseed (Brassica napus L., 2n =  4x =  38; genome AACC) is one of the most important oilseed crops in the 
world and the genetic control of yield and yield-related traits has been studied extensively. However, less attention 
has been focused on elucidating the genetic mechanism of seedling traits. Well-developed seedling traits can con-
tribute directly to an increase in and stabilization of yield and its heterosis, mineral nutrient absorption, drought 
tolerance, and salinity tolerance in crops1–10. Thus, understanding the seedling traits will be conducive to breeding 
programs in B. napus.

In rapeseed, early seedling development traits have been shown to significantly correlate with agronomic 
traits2. Many heterosis-related quantitative trait loci (QTLs) for seedling traits in B. napus are common with 
yield-related QTLs1. Several promising positional and functional candidate genes have been associated with ger-
mination speed, absolute germination rate, and radicle growth in B. napus6. The number of loci detected for 14 
seedling development traits, and candidate genes GER1, AILP1, PECT, and FBP were reported to strongly relate 
to the seedling development traits in B. napus7. Hypocotyl elongation is thought to be an importantly typical 
seedling trait in plants. However, almost all studies on hypocotyl elongation have focused on Arabidopsis. Global 
transcriptome analysis has revealed circadian regulation of key pathways in rhythmic hypocotyl elongation11. The 
transcriptional regulators CIRCADIAN CLOCK ASSOCIATED1 (CCA1), EARLY FLOWERING3 (ELF3), ELF4, 
and LUX ARRHYTHMO (LUX) appear to link the circadian clock to diurnal control of hypocotyl growth12,13. 
Therefore, hypocotyl elongation has a fiercely complex genetic mechanism, but little knowledge is available about 
hypocotyl elongation in B. napus.
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Expressed sequence tag (EST) sequence data, array analysis, amplicon resequencing, sequences, and 
next-generation sequencing technologies efficiently allow genome-wide association studies (GWASs) and tran-
scriptome analysis to be novel strategies for dissecting complex traits in plants14–21. In the present study, a GWAS 
for hypocotyl elongation was carried out with a panel of 210 B. napus accessions genotyped for 23,435 SNPs. We 
also performed transcriptome sequencing of long and short hypocotyl phenotypes. The main objectives of this 
study were to obtain a better understanding of hypocotyl elongation and its relationship with yield-related traits 
or heterosis, dissect the genetic basis of hypocotyl elongation by combining GWAS and transcriptome analysis, 
and perform Gene Ontology (GO) and KEGG pathway analysis for associated genes in B. napus.

Results
Phenotypic variations and correlation analysis. Extensive phenotypic variations in hypocotyl elon-
gation were observed in the 210 rapeseed lines (Fig. 1A and Supplementary Tables S1 and S2). The hypocotyl 
elongation of the lines was normally distributed (average =  2.66, range 1.38 to 4.81), and 63.33% of hypocotyl 
elongation values were between 2.00 and 3.00.

The correlation coefficients between hypocotyl elongation and yield-related traits showed that hypocotyl elon-
gation positive correlated with seed yield per plant (0.29) and biomass yield per plant (0.21) at P =  0.01 and plant 
height (0.19) at P =  0.05 (Supplementary Table S3). Linear regression analysis of the correlated traits indicated 
that hypocotyls elongation can explain 3.28% of the total seed yield per plant (P <  0.05), 4.49% of the total bio-
mass yield per plant (P <  0.01), 3.59% of the total plant height (P <  0.05), respectively.

Genetic diversity, population structure, and relative kinship analysis. The genetic diversity and 
population structure of the 210 accessions were analyzed using 5,334 SNPs (Supplementary Table S4). Clustering 
inference showed that the most significant change in likelihood occurred when K increased from 2 to 3, and the 
highest Δ k value was observed at K =  2 (Fig. 2A–C). Considering the probability of membership threshold of 
0.70, 61 and 140 accessions were assigned to subgroups Q1 and Q2, respectively (Supplementary Table S1). The 
remaining nine accessions were assigned to a mixed group (Q3). The PCA also provided a pattern for the genetic 
structure of the GWAS population (Fig. 2D). The top two principal components clearly separated these subpop-
ulations and explained 8.85% and 4.94% of the total SNP variations in the rapeseed panel, respectively. All of the 
parameters suggest that the three-group model (subgroups Q1, Q2, and Q3) sufficiently explained the genetic 
structure among the 210 accessions. The mean genetic distance (GD) between lines was 0.54, and 74.85% of 
pairs had a GD ranging from 0.5 to 0.7 (Fig. 3A). The average kinship coefficient identity by descent (IBD) within 
the total diversity set was 0.06 (Fig. 3B). A total of 55.93% of the pairwise kinship estimates were equal to 0, and 
17.85% of pairwise kinship coefficients varied from 0 (excluding 0) to 0.05.

LD analysis. All 23,435 SNPs in the total panel were used for LD analysis. The distributions of r2 with 
respect to the physical distance from each chromosome are shown in the Supplementary data (Fig. S1 and 
Supplementary Table S5). As expected, the mean r2 between 0 and 500 kb decreased rapidly and continuously, fol-
lowed by much slower decay at increased physical distance for both the A genome and C genome. The overall LD 
decay distance was 893.84 Kb when the r2 cutoff was set to 0.1. The rate of LD decay varied over different chromo-
somes in both the A genome and C genome, with the shortest LD decays of 459.03 kb on chromosome A07 and 
602.91 kb on chromosome C08 and the longest LD decays of 968.17 kb on chromosome A09 and 3,190.79 kb on 
chromosome C09. Obviously, the LD of the A genome decayed significantly faster than the LD of the C genome.

Association mapping and candidate gene prediction. Total 23,435 polymorphisms with minor 
allele frequency (MAF) ≥  0.05 were selected for association mapping of hypocotyl elongation using the BLUP 
value across multiple replications (Supplementary Table S1). Model comparison analyses indicated that P-values 
from the PCA +  K model were nearer the expected P-values than those of the GLM, Q, PCA, and Q +  K models 
(Fig. 4A). Thus, the PCA +  K model was selected for association mapping of hypocotyl elongation. Five SNPs on 
C07 were highly significantly associated with hypocotyl elongation at P <  2.13 E− 06, with a FDR of 1.0% (Fig. 4B 
and Table 1). All detected SNPs were located between 42.15 and 42.25 Mb on C07 and could explain 4.82% of the 
total phenotypic variance. Thus, the development of hypocotyl is controlled by a minor-effect polygene. In LD 

Figure 1. Phenotypic variation in hypocotyl length. (A) Frequency of phenotypic variation in 210 accessions. 
(B) Comparison of two phenotypes by t-test.
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analyses, the r2 values were >  0.79 for all pairs of associated SNPs, suggesting that the associated SNPs were in 
high LD with each other (Fig. 5A and B).

According to the associated SNP variations, four haplotypes (H0, H1, H2, and H3) were identified from 
these B. napus accessions (Fig. 5C). H0, H1, H2, and H3 were observed in 3, 81, 100, and 8 lines, respectively. 

Figure 2. Analysis of the population structure of 210 rapeseed accessions using STRUCTURE. (A) Estimated 
L(K) of possible clusters (k) from 1 to 10. (B) Delta K based on the rate of change of L(K) between successive K 
values. (C) Population structure based on k =  2. Red represents subgroup Q1; green represents subgroup Q2.  
(D) Principal component (PC) analysis.

Figure 3. Genetic distance and kinship coefficient analysis between pairs of accessions. 
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Approximately 94.27% of accessions comprised H1 and H2. Therefore, H0 and H3 are rare variations, whereas 
H1 and H2 are conserved by artificial selection during the genetic improvement of modern B. napus breeding 
accessions. Further analysis showed that H0, H1, H2, and H3 have mean hypocotyl elongations of 2.99, 2.52, 2.79, 
and 2.52, respectively (Fig. 5D). H2 had a significantly (P =  0.001) greater hypocotyl elongation than H1. H0 and 
H3 were not analyzed because they are extremely rare. Thus, H2 may be a favorable haplotype and facilitate the 
selection of better genotypes for hypocotyl elongation in breeding B. napus.

Candidate genes were predicted along the ~100 Kb region between two associated SNPs (Bn-scaff_16110_ 
1-p685428 and Bn-scaff_16110_1-p587456) according to the newly released B. napus genome sequence22. Only 
five genes (BnaC07g46740D, BnaC07g46760D, BnaC07g46770D, BnaC07g46780D, and BnaC07g46800D) were 
detected in the candidate region (Supplementary Table S6). Of these genes, BnaC07g46770D was previously iden-
tified to regulate the flowering time in rapeseed23. The closest distance between BnaC07g46770D and a significant 
SNP (Bn-scaff_16110_1-p670992) was 34 Kb. Considering the LD decay of 754.95 Kb in C07, candidate genes 

Figure 4. Association analyses of hypocotyl elongation. (A) Quantile–quantile plots of estimated − log10(P) 
from the association analysis of hypocotyl elongation. The black line represents expected P-values with no 
associations. The red line represents observed P-values using the GLM model. The green line represents 
observed P-values using the Q model. The blue line represents observed P-values using the PCA model. The 
cyan line represents observed P-values using the Q +  K model. The pink line represents observed P-values 
using the PCA +  K model (color figure online). (B) Manhattan and quantile–quantile plots generated from 
the genome-wide association analysis of hypocotyl elongation. The blue horizontal line depicts the Bonferroni 
significance threshold (2.13 E-6).

SNP Chromosome Allele Position MAF P-value R2(%)

Bn-scaff_16110_1-p587456 C07 A/G 44303399 0.49 1.94E-06 4.82

Bn-scaff_16110_1-p670992 C07 G/A 44218661 0.50 7.25E-07

Bn-scaff_16110_1-p671315 C07 A/G 44218337 0.49 7.66E-07

Bn-scaff_16110_1-p685258 C07 A/G 44204592 0.50 6.87E-07

Bn-scaff_16110_1-p685428 C07 C/A 44204201 0.50 7.24E-07

Table 1.  Summary of SNPs significantly associated with hypocotyl elongation. MAF, minor allele 
frequency; R2(%), amount of phenotypic variation for each trait explained by multiple SNPs.
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were also predicted in the region between 754.95 Kb upstream and downstream of the associated peak; 196 genes 
were obtained in the enlarged candidate region (Supplementary Table S6). All of the genes were blasted against A. 
thaliana genome data, but none of the predicted genes were homologous to the genes directly controlling hypo-
cotyl elongation in Arabidopsis.
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BnaC07g46660D, BnaC07g46770D, and BnaC07g47470D) were associated with the response to hormone and 
flower morphogenesis (Supplementary Table S8).

To explore the function of DEGs in the biosynthesis and metabolite pathways, KEGG pathway analysis was 
performed in two phenotypic groups (Supplementary Table S9). Six DEGs (BnaC07g45590D, BnaC07g45710D, 
BnaC07g46060D, BnaC07g46560D, BnaC07g46660D, and BnaC07g47470D) acted in the 30 pathways by encoding 
corresponding enzymes. For example, BnaC07g46060D and BnaC07g46560D regulate the lignins and phenylpro-
panoid biosynthesis in phenylpropanoid metabolic pathways by encoding dehydrogenase and lactoperoxidase, 
respectively. Furthermore, BnaC07g46060D and BnaC07g47470D participate in glycolysis/gluconeogenesis and 
nitrogen metabolism and carbon fixation in photosynthetic organisms by encoding dehydrogenase and aldolase, 
respectively. A global examination of gene expression demonstrated that genes encoding dehydrogenase regu-
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Comparative analysis. Of the 29 DEGs detected by combining transcriptome sequencing analysis and 
a GWAS, 26 homologous genes were identified using the Brassica Genome Browser database and A. thaliana 
Genome Browser database (Fig. 6 and Table 2). BnaC07g46770D and BnaC07g46780D were located within 
84.7 Kb of two significant SNPs: Bn-scaff_16110_1-p670992 and Bn-scaff_16110_1-p587456. BnaC07g46770D 

Figure 6. The distribution pattern of candidate genes and SNPs associated with hypocotyl elongation. The 
abbreviations for orthologous genes in A. thaliana are shown in parentheses. SNPs are marked in red. Numbers 
represent the relative distance in the reference genome in kilobases.
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was previously reported to regulate flowering time and is orthologous to A. thaliana AP2 and AT4G37750. AP2 
belongs to the AP2/ERF gene family and is involved in plant development, in turning leaves into floral organs24. 
AT4G37750 belongs to the AP2/EREBP gene family and directly regulates a key clock gene (CCA1) that provides 
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In summary, this study is the first to study the hypocotyl elongation by integrating GWAS and transcriptome 
sequencing in B.napus. We demonstrated that the genes mediated by circadian clock, hormone biosynthesis, 
floral morphogenesis, or other metabolic signaling pathways may regulate the hypocotyl elongation in B. napus. 
These findings reveal that the phenotypic variation of the hypocotyl is a complex biological process regulated by 
a polygenic network in B.napus. Over the past decade, circadian clock and hormone effects had been linked to 
agronomic traits in plant48,49. Hypocotyl elongation represents the best-studied model of plant circadian clock and 
hormone response system. Therefore, modification of these areas may have the potential for systemic effects that 
produce beneficial yield trait in B.napus.

Materials and Methods
Plant materials and trait collection. A set of 210 elite inbred rapeseed lines with abundant phenotypic 
variation were collected to construct an association panel (Supplementary Table S1); 55 lines (X001-X055) were 
used to isolate and characterize the sucrose transporter (SUT) gene50, and 155 lines (X056-X210) were derived 
from an association mapping population genotyped using the 60 K Illumina®  Infinium SNP array51. The yield-re-
lated traits of these lines were measured in a previous study50,51. The 210 lines were grown with 20 replications in 
10 ×  10 culture plates. When cotyledons were fully developed, all of the lines were sprayed with nutrient solution 
as described previously52. To control environmental conditions, the seedlings were grown in an illuminated cul-
ture room under 16 L:8D conditions at 20 °C and measurements performed on day 20. Photographs of seedlings 
were analyzed using AutoCAD software (http://www.autodesk.com.cn/education/free-software/featured). Three 
long hypocotyl (L) and three short hypocotyl (S) lines were used for transcriptome sequencing. These lines were 
selected from a doubled haploid (DH) population (DH-6004) developed from 2011–5515–137 ×  Gui01A10 F1 
(field code 9–6004), in which ‘2011–5515–137’ exhibits early flower and ‘Gui01A10’ moderate flower.

SNP genotyping. Fifty-five lines (X001-X055) and six DHs (DH1, DH2, DH3, DH4, DH5 and DH6) were 
genotyped using the Brassica 60 K Illumina ®  Infinium SNP array. Combined with genotype information obtained 
previously for the other 155 lines, 26,016 SNPs were mapped in silico using the probe sequences of 52,157 SNPs 
to perform a Blast N search against B. napus genome sequences53. Only the top hits, using an E-value cut-off of 
1E-15 against the B. napus genome sequences, were considered. Hits with AA or BB frequency equal to zero (i.e., 
monomorphic), call frequency < 0.8, or minor frequency < 0.05 were excluded. Thus, a total of 23,435 SNPs were 
filtered for association analysis (Supplementary Table S4). Genetic diversity and Nei’s genetic distance54 were 
estimated using PowerMarker version 3.2555.

Population structure, relative kinship, and linkage disequilibrium. The population structure 
was inferred using the software package STRUCTURE v2.3.456 based on 5,334 SNPs with AA or BB frequency  
> 0.05, call frequency ≥ 0.9 and minor frequency > 0.2. Five independent runs were performed with a K-value 
(the putative number of genetic groups) from 1 to 10, with both the length of the burning period and the number 
of Markov Chain Monte Carlo (MCMC) replications after burning set to 100,000 iterations under the ‘admix-
ture model’. The most likely k-value was determined by the log probability of data [LnP(D)] and ad hoc statistic 
Δ k based on the rate of change of LnP(D) between successive k values as described previously57. Accessions 
with a probability of membership > 0.7 were assigned to corresponding clusters, and those with a probability of 
membership < 0.7 were assigned to a mixed group. The relative kinship matrix comparing all pairs of accessions 
was calculated using the software package SPAGeDi58. Negative values between two individuals were set to 059. 
Principal component analysis (PCA) based on SNPs was carried out using the EIGENSTRAT tool60. The linkage 
disequilibrium (LD) parameter r2 was calculated using the software TASSEL 3.0 with 1,000 permutations61.

GWAS and statistical analysis. The effects of population structure (Q, PC) and kinship (K) on the traits 
were evaluated by a GWAS using five models (GLM, Q, PCA, PCA +  K, and Q +  K). Significant loci were identi-
fied by comparing P-values with the Bonferroni threshold (0.05/23,435 =  2.13E-06). Quantile-quantile plots of 
the estimated –log10 (P) values in the association mapping model were created using the observed P-values from 
marker-trait associations versus the expected P-values. In addition, false discovery rates (FDRs) were calculated 
as [(m ×  P)/n] ×  100%, where m is the total number of SNPs (23,435 in this study), P is the P-value threshold for 
detecting a significant association, and n is the total number of significant associations per trait62.

Phenotypic variation, correlation and linear regression analyses were performed using SPSS version 19.0 (IBM 
Corp., Armonk, NY, USA).

Nuclear RNA extraction and RNA sequencing. When the second cotyledons were fully expanded in 
the illuminated culture room, the seedlings of three S lines (DH1, DH2 and DH3) and three L lines (DH4, DH5 
and DH6) were pooled to long hypocotyl bulk and short hypocotyl bulk, respectively, then immediately frozen 
in liquid nitrogen and stored at − 80 °C. Total nuclear RNA was extracted from ~100 mg of frozen plants using 
the RNAprep Pure Plant Kit (TIANGEB BIOTECH, Beijing, China) according to the manufacturer’s instructions 
in two biological replicates. NanoDrop ND 1000 (NanoDrop technologies) was used to evaluate the quality of 
the extracted RNA. RNA with an RNA Integrity Number (RIN) >  8 as assessed by Agilent Technologies 2100 
Bioanalyzer (Agilent) was used to prepare the c-DNA library. The sequencing library was generated using the 
Illumina RNA Library Prep Kit (NASDAQ: ILMN, America) following the manufacturer’s recommendations. 
The library preparations were sequenced on an Illumina Hiseq 200 platform, and 100-bp paired-end reads were 
generated.

DEG identification and gene annotations. The sequenced data were trimmed by removing adapters, 
low-quality sequences or bases, and contaminations or overrepresented sequences using Trimmomatic software 
version 0.33. The clean reads were aligned to the B. napus reference genome22 using Hisat software version 0.1.6 

http://www.autodesk.com.cn/education/free-software/featured
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and then assembled using TopHat 2.0.0 and Cufflinks63. Fragments per kilobase million (FPKM) was determined 
to estimate gene expression levels. Differentially expressed genes (DEGs) between two genotypes were identified 
by Cuffdiff based on the criteria P <  0.05 and |log2 (L/S)| >  1. To identify possible homologous genes, DEGs were 
blasted against the A. thaliana genome database (http://www.arabidopsis.org/). The GO enrichment analysis for 
DEGs was implemented by Blast2GO and significantly enriched GO terms (P <  0.05) displayed using the online 
tool WEGO (http://wego.genomics.org.cn). The enrichment of DEGs was determined by KEGG pathway anal-
ysis using the KOBAS2.0 website (http://kobas.cbi.pku.edu.cn/home.do). To analyze the metabolic pathway and 
functional classification of DEGs, expression data were mapped to metabolic pathways using MapMan software64.
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