

ARTICLE INFO

ABSTRACT

 Article history:
 2016

 30
 2017

 A
 5 F
 2017

 A
 8 F
 2017

Sclerotinia sclerotiorum

170407	20.40	10 m	,	C l		_		DCF	10
17,24,37,	39,40,4	8."		S. sciero	norun	1,			DCF
					14-1	17,			
		DCF		fi					S
sclerotior	ит		•			,			-
		,				,	,		-
	,	(D)				()	
	, (Ssł	ık, SsYpd,	Sssk1)	A	-			(Sssk2, S	sPbs
SsHog)									

2. Materials and methods

2.1. Isolates of S. sclerotiorum

2.2. Fungicide

	(96.2%)	, v v
С	, C)	
1000 μ /	,	
4 (

2.3. Determination of glycerol content in mycelia

2.4. Determination of oxalic acid content

12 (111)			D
. 12 . (III)			
	510 .		-
	:2 F C ₃	(().5 /),
20 <i>X</i> -C	(C 50,	∕ ≦ 2),	1.2
	(5 /)		
50 fl . D	(0, 0.1, 0.2, 0.4	0.8)	-
(2 /)	,	-	
fi	25 .	fl	-
10	25 C 30	. ,	
510		•	
	,		
250- fl	100		(DB).
F,	fi		
DB 0.25 μ / . A	23 C	3	
175	1500	10	,
510	,		-
· · · · ·			

2.5. Determination of cell membrane permeability

14.				2.3.
(0.3)			50	
30	-	. E		

(BA E900, BA E , , C) 0, 5, 10, 20, 40, 60, 80, 120 160 . A 160 , 10 , fi

: (%) = C / F -× 100.

2.6. Determination of peroxidase and polyphenol oxidase activity

А	0.3	5				-
2.3					0.1	-
-		0.8	0.05			
(∕≦ 5.5	D	6.8).			
12000 D	,4 C	20 .				
D	. 14.				1.5 ,	
0.04		0.4	75 (0.2%		-
50)					
470						
0.5	0.3% 🖍	2				-
fi						
				VV.	. 41	
fi						
0.69	0.05			(-(5.8) 0.75	
0.02			30 C	2	. A	
398						

2.7. Cloning and sequencing of genes involved in two-component HK system and MAP kinase cascades

G	D	А				C AB	(
		В)	3	3.A			-
		S sclere	ntiorum 1					
		5. 501010	, cioranti i	,		(Schk)		
		(C1-1)	۲			(SSIIK),	- -	
		(SSSKI),				(Ssypt	1),	A
	(SsHog),	A	(SsP	bs),	Α		(Sssl	<i></i> (2)
		5.0 (5.0,	В	,	Α, Ο	CA),	
		1.	A fi					
50		D A	1-5™ 2	2 ~~	-F			
400	ш		(FR	-		B	
400 C		6	(LD			, р	,
C .). A	11					25	
	:		4	2	98 C,		35	
		98 C	10 ,		55 C	15,		-
	72 C	1,	fi		72 C	10		DΑ
Е		(B - ,	C1000). A	fi		
		(\mathbf{C})			 1%			-
		(с), б	F	A C	F		($F(\mathbf{A})$
				<i>n</i> . u		`	C	LGA),
		G	E - E		l),		
	E C	•, •						
		,						
		D	A (6.0,		С		,
	. CA)			(// .		/	. /
	/	-)					1	DÁ
	/							

Table 1

	(5'-3')	
F1	A GGGGGACAC ACGA AGC C	Sshk
1	AG ACAGG CC GCAAG GG	
∕∽-F	A GGC GAA CG AGAG	SsHog
/*-	GACCA CCACCAGA GGGCG	
-F	A GACAGA AA CC CAA AGA CG	SsPbs
-	CA CAAACCC GC CC CA	
2-F	A GGAGCG CCACA A G	SsSk2
2-	AC GAGAGC CCAC A CGC G	
1-F	GACGA AGGCGA C CAAAACACGA	SsSk1
, 1-	A CCCACAACCACC CA A CG	
Y -F	A G CC C CCAC C ACC C	SsYpd
Υ -	G GGCA AAAAC C CAAG	
β -F	GGA GC CC GACCAG	β-
β -	AGCGGCCA CA G C AGG	
-F	AAGGG AGGGAAG AAGGCAA C	Sshk
-	G A AGGGCCAG GG AG G A G	

2.8. Quantitative RT-PCR

,

A		(, C -
, СА, А). F	- DA (). A	- C	
	2 - C	F ™F G	(B —).
(B - ,	, CA, A), 1 μ		,
0.5 μ (10 3.0 μ)		(1),
95 10.	C 30,40	95 C	5, 60 C :10 -
	55 C 95 C	0.5 C	
	3511K	p-	$2^{-\Delta\Delta C}$
25.	•		

2.9. Data analysis

٧V	Α	VA		t-			-
D,	,			,	(
		,	. 17.0,	., C	,). G		-
			Ε (. 2010,	С	,	-
, VV	A).						

3. Results

3.1. Glycerol content

3.2. Cell membrane permeability and oxalic acid content

fi

.

(∕₩)

3.3. Peroxidase and polyphenol oxidase activity

D DA fi (P < 0.05) DA fi (P < 0.05) D

3.4. Newly identified point mutations in the Sshk and SsPbs genes

4. Discussion

fi fi -S. sclerotiorum, . B. cinerea S. sclerotiorum, fi J. Li et al. / Pesticide Biochemistry and Physiology 138 (2017) 15–21

Fig. 4. C Sshk (1G 12694.3) .(A) Sshk). (B) B Sshk ΒA (DA SsPbs 96 4. -4 Sshk . (C) -6 ,

V (E) . E t-.

. ., S. sclerotiorum fi 14,16, fi 48. fi . D fi . B , 16. S. sclerotiorum. D 16,32, 19,32. D fi , D S. sclerotiorum D D oxysporum . . fragariae 20. D . A S. sclerotiorum DCF 90-DCF S. sclerotiorum, B. cinerea, A. alternata, fructicola 13,16,29-30.

232 fi 90-_ **4**, G1087D **/ 6**. fi

14,16.

_

_

_

-

М.

Fusarium

Competing interests

· · ·

Acknowledgements

F C (31371964).

References

S. -S. Sshk

-

- , N, Y , , , , Y , Sclerotinia sclerotiorum, ▲ A . . 13 (1997) 32–35.
- Fusarium oxysporum,

 395–407.

 38
 C.
 ,
 ,
- fi , : .C
- A.Y , Dic1p → G1- A Cochliobolus heterostrophus, : ♥, , C, C 2006, .1-6 (). , ♥, , D. , E Cercospora zeae-maydis A . 41 (2010)
- 40 . V , . F , A
- cinerea, . 41 G. . 🖤 , .
- 42 Y. W. Botrytis cinerea , , 1, 2007.

- 43 V. W., V. . , C. C. , .G. , D Sclerotinia sclerotiorum • .43 (2014) 307–312. С,
- . ____ , B . . 26 (2001) 369–376. 45 **J** , . . , D F 29 (2004) 40–43. 46 **J** , D .C .
- 46 Sclerotinia
 19-23.
 47 F. , D Scler
 C , A , Y , 2014.
 48 F. , . . , F. . , D sclerotiorium C , D . 98 (2014) 1221-1226.
 49 F. , F. . , . . , A. . , F fi Sclerotinia sclerotiorum C , D . 98 (2014) 568. , D Sclerotinia Brassica napus, B . 122 (2003)
 - Sclerotinia sclerotiorum
 - Sclerotinia
 - _