The Role of p38 MAPK, JNK, and ERK in Antibacterial Responses of *Chilo suppressalis* (Lepidoptera: Crambidae)

Lin Qiu,^{1,2} Boyao Zhang,² Lang Liu,² Xiaoping Wang,² Chaoliang Lei,² Yongjun Lin,¹ Jing Zhao,^{1,2} and Weihua Ma^{1,2,3}

¹National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Wuhan, China (Qiulin5205II@126.com; yongjunlin@mail.hzau.edu.cn; zhao-jing@mail.hzau.edu.cn; weihuama@mail.hzau.edu.cn), ²Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China (joanna0405zhang@gmail.com; 1298753014@qq.com; xpwang@mail.hzau.edu.cn; ioir@mail.hzau.edu.cn), and ³Corresponding author, e-mail: weihuama@mail.hzau.edu.cn

Subject Editor: Denny Bruck

Received 15 January 2017; Editorial decision 6 April 2017

Abstract

The mitogen-activated protein kinases (MAPKs) are conserved signal transduction pathways and broadly responsible for bacterial infection from yeast to mammals, and virus, fungi, and bacteria, specifically *Bacillus thuringiensis*, to insects. But little is known about the MAPK pathways in antibacterial responses in *Chilo sup pressalis* (Walker), an important lepidopteran pest of rice. In this study, we used the bacteria of *Bacillus thuringiensis*, *Escherichia coli*, and *Staphyloccocus aureus* to infect *C. suppressalis* larvae, and the responses of MAPK pathways were analyzed. The results showed that *E. coli* infection induced the up-regulated expression of *Csp38* and *CsERK1* at 24 h postinfection (pi). Meanwhile, injection of *B. thuringiensis* and *S. aureus* resulted in strong activation of *CsJNK* phosphorylation at 3 h pi. These results suggest that MAPK signaling pathways play important functional roles in antibacterial responses in *C. suppressalis* larvae.

Key words: p38 mitogen-activated protein kinase, c-Jun N-terminal kinase, extracellular signal-regulated kinase, Chilo suppressalis, antibacterial responses

· e = \$. \$ e ↓ \$ e (A ·), . . . e, * e , * . e \$. e . . · · · · · · · · . t. t .. t / -y 2002**,** Berg, 2004, were a flor tot mt. ... t i mi maria (A , . . X ste, E-m (E), -/ ,- (/ 38 1. A (/ . t 2002). ... 38 A mut ter t. λt. - • - ,mmt. t. t. m-t - ter, . . (. ^ E mm - Arista e e tais t tt . 2012).

to a = for the set of a star of the set of the second t 2002, to D 2005). m mm 4 (D **V** 1 1. easter to protocolor state paties degrading t Bacillus thuringiensis (R) Gt (G) 5Bt Caenorhabditis elegans (fim t . 2004, **t** ... 2011).t. , t - t, t t. Litopenaeus vannamei;t ... t 38 A m

2014). most - wast -1, 38 A fr. 1 t B. G. t. Drosophila. 🟌 / .t.w de le appendie in par (B F -Galleria mellonella t. B. thuringiensis - t. t. f_ 38 А

and the section of the transformed and the tra (Gt. t. 2001, t. 2007, \$ the group of the off of the or the most of the -- t ... 2009). t--tt mater 1 miller in the second second X. t. / _ t . . . (C. ×., X. . . t.t.t.t A 1. 6.1 t. 11. Arrite ton A. A. Marken 1.1 . . 1 / A to a to the state of the stat W. K. K. 11. • • -, t, , At.t A t. C. suppressalis. 、大 /*

[©] The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com

Table 1. Specific primers used in the experiments

• m • m	• . ~ . E E	• 'm'' · · · · (5'-3')
<i>EF-1-</i> F	1.11	GAACCCCCA ACAGCGAA CC
EF-1_	At	C CCG GCCAACCAGAAA AGG
<i>Р38-</i> F	· · ·	CA ACGCGG GAG GCAA
P38	At	GCAAAC G CGA CGC GAA
JNK-F	· · ·	GGCAGC ACGA AC GGCA
JNK-	At	AC CCCGA G C GCG
ERK1-F		GCC GCC A A CGGCAAC
ERK1	At	CCGG GGAAGGG GAGG C
ERK2-F	· · ·	C GCG C G ACGGGAG G C
ERK2	Att	CGAACAG A GCCACCAGAAG

Materials and Methods

Insect Rearing

Real-Time Quantitative PCR

a marker elliptic presses A particulation m to E coli A , E to B , E to E coli A , E to E B to , to , to , to for $(10,000, m, 4^{\circ}C) f = 5 m$ $\mathbf{t}_{\mathbf{v}} = \mathbf{c}_{\mathbf{v}} \mathbf{t}_{\mathbf{v}} (\mathbf{D}) \cdot \mathbf{f} \mathbf{1.0}, \quad \mathbf{2} \mu = \mathbf{t}_{\mathbf{v}} \mathbf{c}_{\mathbf{v}} \mathbf{c}_{\mathbf{v}} \mathbf{c}_{\mathbf{v}} \mathbf{w}_{\mathbf{v}} \mathbf{w}_{\mathbf{v}}$ $\begin{array}{c} \mathbf{x}_{1} = \mathbf{y}_{1} \mathbf{x}_{1} \mathbf{x}_{2} \mathbf{x}_{1} \mathbf{x}_{2} \mathbf{x}_{1} \mathbf{x}_{2} \mathbf{x}_{1} \mathbf{x}_{2} \mathbf{x}_{1} \mathbf{x}_{2} \mathbf{x}_{1} \mathbf{x}_{2} \mathbf{$ $(-1)_{w} \quad f : t = CB \quad f : t = (tt : t)_{www}$ m ℓ ℓ k) ℓ C C suppressalis (1, t, ..., t, ..., 1, ..., $\begin{array}{c} & & \\ & &$, a, alter a a C. ema, a dide at a par alter t, e sut eve v, D. A, er, un to 1µtt 🖕 A_w , v $\begin{aligned} \mathbf{t}_{\mathrm{const}} &= \left(\begin{array}{c} \mathbf{D} \\ \mathbf{A} \\ \mathbf{C} \\$ 2004; 2).

Western Blot Assays

 Table 2. Primer specifications for optimized qRT-PCR amplification

 of C. suppressalis

Gran m	Eff.	R^2	~• *
CsEF1	99.8%	0.992	-3.326
Csp38	100.9%	0.994	-3.300
ĊsJNK	103.9%	0.995	-3.235
CsERK1	99.9%	0.992	-3.325
CsERK2	103.5%	0.980	-3.242

 $\begin{array}{c} \mathbf{x}_{1} < \mathbf{x}_{1} < \mathbf{x}_{2} < \mathbf{x}_{3} < \mathbf{x}_{4} < \mathbf{x}_{1} < \mathbf{x}_{4} < \mathbf{x}_{4} < \mathbf{x}_{5} < \mathbf{x$

Data Analysis

 $ttt = \frac{1}{2} \frac{1}{2$

Results and Discussion

Effect of Bacteria on *C. suppressalis* p38 MAPK Pathway Activation

Fig. 1. Effects of bacterial treatment on *C. suppressalis* MAPKs. (A) Relative estimates of *Csp38* transcripts from qRT-PCR of *C. suppressalis* larvae treated with bacteria for 0, 3, 6, 12, and 24 h. (B) Relative estimates of *CsJNK* transcripts from qRT-PCR of *C. suppressalis* larvae treated with bacteria for 0, 3, 6, 12, and 24 h. (B) Relative estimates of *CsJNK* transcripts from qRT-PCR of *C. suppressalis* larvae treated with bacteria for 0, 3, 6, 12, and 24 h. (C) Relative estimates of *CsERK1* transcripts from qRT-PCR of *C. suppressalis* larvae treated with bacteria for 0, 3, 6, 12, and 24 h. (D) Relative estimates of *CsERK2* transcripts from qRT-PCR of *C. suppressalis* larvae treated with bacteria for 0, 3, 6, 12, and 24 h. (D) Relative estimates of *CsERK2* transcripts from qRT-PCR of *C. suppressalis* larvae treated with bacteria for 0, 3, 6, 12, and 24 h. (D) Relative estimates of *CsERK2* transcripts from qRT-PCR of *C. suppressalis* larvae treated with bacteria for 0, 3, 6, 12, and 24 h. (D) Relative estimates of *CsERK2* transcripts from qRT-PCR of *C. suppressalis* larvae treated with bacteria for 0, 3, 6, 12, and 24 h. Relative amounts of genes transcript were normalized to the expression of *EF1*. Each symbol and vertical bar represents the mean \pm SE (n = 3). Asterisks indicate significant differences (P < 0.05; ANOVA).

Responses of *C. suppressalis* JNK Pathway to Bacteria Challenge

For which the transformation test metator CsJNKt is the transformation CsJNKt is the tra

K. K. / E. J. K. J. C. M. M. K. K. K. K. M. M. J. M. J. K. J. 2007).

Analysis of *C. suppressalis* ERK1/2 Pathways in Response to *S. aureus*, *B. thuringiensis*, and *E. coli* Immune Stimulations

 $2C_{\pm}$, \ldots , \ldots , \ldots , \ldots , \ldots , E_{\pm} , \ldots , E_{\pm} , \ldots , t = t = 12. 2C, $t = t = 1, \dots, t = 1,$

- Bradford, M. M. 1976. As (1, 1), (1, 2),
- Cancino-Rodezno, A., C. Alexander, R. Villasenor, S. Pacheco, H. Porta, Y. Pauchet, M. Soberon, S. S. Gill, and A. Bravo. 2010. $m_{m}t_{m}t_{m} = t_{m}t_{m}$ **t** the standard stand
- Chen, J. M., C. C. Xie, L. L. Tian, L. X. Hong, X. R. Wu, and J. H. Han. 2010. C. T. T. Strand C. S. T. Drosophila C. C. T. T. A. 107: 20774. 20779.

Chouvenc, T., N. Y. Su, and A. Robert. 2009